An efficient algorithm for the discrete-time algebraic Riccati equation

نویسندگان

  • Linzhang Lu
  • Wen-Wei Lin
  • C. E. M. Pearce
چکیده

In this paper the authors develop a new algorithm to solve the standard discrete-time algebraic Riccati equation by using a skewHamiltonian transformation and the square-root method. The algorithm is structure-preserving and efficient because the Hamiltonian structure is fully exploited and only orthogonal transformations are used. The efficiency and stability of the algorithm are analyzed. Numerical examples are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

An efficient LQR design for discrete-time linear periodic system based on a novel lifting method

This paper proposes a novel lifting method which converts the standard discrete-time linear periodic system to an augmented linear time-invariant system. The linear quadratic optimal control is then based on the solution of the discrete-time algebraic Riccati equation associated with the augmented linear time-invariant model. An efficient algorithm for solving the Riccati equation is derived by...

متن کامل

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

Initializing Newton's Method for Discrete-time Algebraic Riccati Equations Using the Butterry Sz Algorithm

The numerical solution of discrete-time algebraic Ric-cati equations is discussed. We propose to compute an approximate solution of the discrete-time algebraic Riccati equation by the (butterry) SZ algorithm. This solution is then reened by a defect correction method based on Newton's method. The resulting method is very eecient and produces highly accurate results.

متن کامل

Backward Perturbation Analysis of the Periodic Discrete-Time Algebraic Riccati Equation

Normwise backward errors and residual bounds for an approximate Hermitian positive semidefinite solution set to the periodic discrete-time algebraic Riccati equation are obtained. The results are illustrated by using simple numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1999